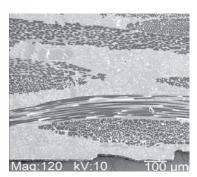
Polymer-to-Ceramic[™] Composite (PTCC) Properties

POLYMER-TO-CERAMIC™ TECHNOLOGY

Polymer-to-Ceramic™ Composite Properties: Carbon Fiber Reinforced


Starfire Polymer-to-Ceramic Composite (PTCC) materials are fiber reinforced ceramic composites which utilize Starfire Polymer-to-CeramicTM technology and produce tough, high thermally stable composites for numerous applications. When reinforced with medium to high modulus carbon fiber, these PTCCs can create low weight, high strength, oxidation stable composites suitable for a wide variety of environments and markets.

Starfire's silicon carbide (SiC) forming poly-carbosilane polymers and the silicon-oxycarbide (SiOC) forming Polyramic® polymers can be used to form robust ceramic matrix composites (CMCs). Table 1 shows some properties of the starting polymers typically used for CMC manufacture.

Property	SMP-10	SPR-688	SPR-212
Ceramic Formed	SiC	SiOC	SiOC
Viscosity (cP)	40-100	300-2,000	12-26
Pyrolysis Yield (%)	72-78	65-68	60-65
Liquid Density (g/cm ³)	1.0	1.1	1.0
Ceramic Density ¹ (g/cm ³)	2.20	1.99	1.95

Table 1: Some typical Starfire Polymer Properties used to manufacture CMCs.

Table 2 shows mechanical and thermal properties of typical 6mm 2-D carbon fiber reinforced laminates comprised of 6k carbon fiber 5HS fabric, and layed up to a 0.90° orientation layup.

Microstructure of a fully densified C/SiC Polymer-to-Ceramic™ Composite

The matrix ceramic is SiC for SMP-10 derived composites and SiOC for SPR-688 and SPR-212 derived composites, and all laminates are processed utilizing Starfire's polymer infiltration and pyrolysis (PIP) technique.

Detail	Composition		
Molding Polymer	SMP-10	SPR-688	SPR-212
Infiltration Polymer	SMP-10	SPR-212	SPR-212
Flexural Strength (MPa)	249	240	255
Flexural Modulus (GPa)	73.0	81.1	78.3
CTE (ppm/°C)	6 _z	6 _z	7 _z
	1.0 _{X-Y}	1.2 _{X-Y}	1.7 _{X-Y}
Thermal Conductivity at 300°C (W/m*°K)	1.5 _z	2.0 _z	2.5 _z

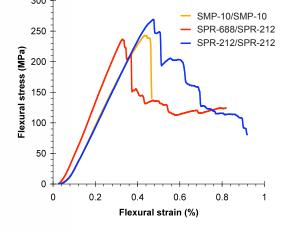


Table 2: Some typical Starfire Polymer-to-Ceramic Composite (PTCC) Properties

Warranty

No analysis of this product is permitted. The data provided relates only to the material identified above, as supplied by Starfire Systems®, Inc. (SSI). Because conditions and methods of use of our products are beyond our control, this information should not be used as a substitution for customer's tests to ensure that SSI's products are safe, effective, and fully satisfactory for the intended end use. SSI's sole warranty is that the product will meet sales specifications in effect at the time of shipment.

¹Pyrolyzed to 850°C